DiketahuiA=2/3 I,I=2/5 R maka nilai A : I : R adalah. 2 : 3 : 5 C. 4 : 6 : 11 2 : 3 : 7 D. 4 : 6 : 15 * a)2 : 3 : 5 b)4 : 6 : 15 c)2 : 3 : 7 d)4 : 6 : 11 Top5: Soal Diketahui sistem persamaan 4x-3y=1dan 2x- y. Top 6: Diketahui sistem persamaan 4x - 3y =1 dan 2x - y = -3 maka nilai dari 3x. Top 7: Diketahui sistem persamaan 4x - 3y = 1 dan 2x - y = -3. Nilai dari 3x - 2y Top 8: Diketahui sistem persamaan 4x 3y 1 dan 2x y maka nilai 3x 2y adalah. Top 9: Diketahui sistem persamaan 4x Diketahuivektor $\vec a = (2,-3, 1)$ dan $\vec b = (1,-2,3)$. Nilai sinus sudut antar vektor $\vec a$ dan $\vec b$ adalah $\cdots \cdot$ A. $\dfrac57$ D. $\dfrac{5}{11}\sqrt3$ B. $\dfrac{11}{14}$ E. $\dfrac{2}{7}\sqrt6$ C. $\dfrac{5}{14}\sqrt3$ Seperti diketahui, dalam agama Islam salat merupakan perintah wajib dari Allah yang harus dilaksanakan oleh seluruh umat muslim. Di mana setiap umat muslim harus menunaikan salat fardu atau salat wajib dari waktu pagi hingga malam hari sebanyak 5 kali. Masing-masing salat ini dilaksanakan pada waktu yang sudah ditentukan, yaitu waktu subuh, zuhur, ashar, magrib, dan isya. Vay Tiền Trả Góp Theo Tháng Chỉ Cần Cmnd. MatematikaALJABAR Kelas 10 SMASkalar dan vektor serta operasi aljabar vektorOperasi Hitung VektorOperasi Hitung VektorSkalar dan vektor serta operasi aljabar vektorALJABARMatematikaRekomendasi video solusi lainnya0334Diketahui A1,2,3, B3,3,1 , dan C7,5,-3 . Jika A...Diketahui A1,2,3, B3,3,1 , dan C7,5,-3 . Jika A...0342Diberikan titik A3,-5,-4, B6,-1,3 dan C12, n, m. Ji...Diberikan titik A3,-5,-4, B6,-1,3 dan C12, n, m. Ji...0329Diketahui titik A3,-2,-1, B1,-2,1, dan C7,p-1,-5 se...Diketahui titik A3,-2,-1, B1,-2,1, dan C7,p-1,-5 se...0309Diketahui P,Q, dan R adalah titik dalam ruang. Jika PQ=2...Diketahui P,Q, dan R adalah titik dalam ruang. Jika PQ=2... No estudo dos números complexos deparamo-nos com a seguinte igualdade i2 = – 1. A justificativa para essa igualdade está geralmente associada à resolução de equações do 2º grau com raízes quadradas negativas, o que é um erro. A origem da expressão i2 = – 1 aparece na definição de números complexos, outro assunto que também gera muita dúvida. Vamos compreender o motivo de tal igualdade e como ela surge. Primeiro, faremos algumas definições. 1. Um par ordenado de números reais x, y é chamado de número complexo. 2. Os números complexos x1, y1 e x2, y2 são iguais se, e somente se, x1 = x2 e y1 = y2. 3. A adição e a multiplicação de números complexos são definidas por x1, y1 + x2, y2 = x1 + x2 , y1 + y2 x1, y1*x2, y2 = x1*x2 – y1*y2 , x1*y2 + y1*x2 Exemplo 1. Considere z1 = 3, 4 e z2 = 2, 5, calcule z1 + z2 e z1*z2. Solução z1 + z2 = 3, 4 + 2, 5 = 3+2, 4+5 = 5, 9 z1*z2 = 3, 4*2, 5 = 3*2 – 4*5, 3*5 + 4*2 = – 14, 23 Utilizando a terceira definição fica fácil mostrar que x1, 0 + x2, 0 = x1 + x2, 0 x1 , 0*x2, 0 = x1*x2, 0 Essas igualdades mostram que no que diz respeito às operações de adição e multiplicação, os números complexos x, y se comportam como números reais. Nesse contexto, podemos estabelecer a seguinte relação x, 0 = x. Usando essa relação e o símbolo i para representar o número complexo 0, 1, podemos escrever qualquer número complexo x, y da seguinte forma x, y = x, 0 + 0, 1*y, 0 = x + iy → que é a chamada de forma normal de um número complexo. Assim, o número complexo 3, 4 na forma normal fica 3 + 4i. Exemplo 2. Escreva os seguintes números complexos na forma normal. a 5, – 3 = 5 – 3i b – 7, 11 = – 7 + 11i c 2, 0 = 2 + 0i = 2 d 0, 2 = 0 + 2i = 2i Agora, observe que chamamos de i o número complexo 0, 1. Vejamos o que ocorre ao fazer i2. Sabemos que i = 0, 1 e que i2 = i*i. Segue que i2 = i*i = 0, 1*0, 1 Utilizando a definição 3, teremos i2 = i*i = 0, 1*0, 1 = 0*0 – 1*1, 0*1 + 1*0 = 0 – 1, 0 + 0 = – 1, 0 Como vimos anteriormente, todo número complexo da forma x, 0 = x. Assim, i2 = i*i = 0, 1*0, 1 = 0*0 – 1*1, 0*1 + 1*0 = 0 – 1, 0 + 0 = – 1, 0 = – 1. Chegamos à famosa igualdade i2 = – pare agora... Tem mais depois da publicidade ;Por Marcelo Rigonatto Especialista em Estatística e Modelagem Matemática Equipe Brasil Escola Diketahui A = I dan I = R. Maka perbandingan A I R adalah 4 6 Soal LANGKAH PERTAMA I Buatlah perbandingan A I dengan menggunakan cara sebagai berikut A = IA I = 2 3LANGKAH KEDUA II Buatlah perbandingan I R dengan menggunakan cara sebagai berikut I = RI R = 2 5LANGKAH KETIGA III Karena antara kedua perbandingan terdapat variabel yang sama yaitu I. Maka antara I = 3 dan I = 2 dicari KPKnya yaitu 6. Sehingga pada kedua perbandingan harus dikalikan dengan 2 dan 3 agar I menjadi 6 sebagai berikut A I = 2 3_________ ×2A I = 4 6I R = 2 5_________ ×3I R = 6 15Sehingga A I R adalah 4 6 Lebih Lanjut Materi tentang perbandingan sederhana Materi tentang perbandingan sederhana Materi tentang perbandingan sederhana Materi tentang perbandingan sederhana ____________ Detail Jawaban Kelas 6 Mapel Matematika Bab 9 Kode VEKTOR SOAL LATIHAN 04 D. Perkalian Skalar Dua Vektor 01. Jika a = 3 i – 2 j + 6 k maka panjang vektor a adalah …. A. 12 B. 9 D. 3 5 E. 2 6 C. 7 02. Jika p = i – 2 j + 2 k dan q = 3 i + 6 j + 2 k maka panjang vektor p + q = ….. A. 4 3 D. 10 B. 3 6 E. 3 5 C. 21 03. Diketahui A-2, 1, 3 dan B6, 5, 2 maka nilai AB = …. A. 3 2 D. 9 B. 5 E. 2 3 C. 6 04. Jika ABC segitiga sama kaki, dimana titik A11, 8, 9, B-1, 2p, 3 dan C3, -2, -9 dengan panjang AB = BC maka nilai p = ….. A. 1 D. 4 B. 2 E. 5 C. 3 05. Pada segitiga KLM, diketahui KL wakil dari vektor a = 4 i – 4 j + 2 k dan KL wakil dari b = 2 i + 4 j + 6 k . Nilai dari a + a  b = ... A. 8 D. 15 B. 10 E. 16 C. 12 06. Jika diketahui vektor a = p i + 2 j – k dan vektor b = i + 3 k serta a  b = 2 3 maka nilai p = … A. -3 D. 3 B. -1 E. 5 C. 2 07. Diketahui titik R terletak pada ruas garis PQ sehingga PR PQ = 1 2. Jika vektor p = 3 i + j + k dan q = 9 i + 5 j + 7 k maka r = …. A. 62 D. 2 21 Vektor B. 61 E. 2 15 C. 38 1 08. Pada gambar disamping nilai dari a . b = … B. 20 3 A. 5 3 C. 10 3 D. 5 2 E. 10 09. Pada gambar disamping nilai dari a . b = … A. –6 3 B. –9 2 C. 6 3 D. 9 2 E. 8 3 10. Pada gambar disamping nilai dari a . b = … A. –12 3 B. –12 C. 12 D. 12 3 E. 24 11. Pada gambar disamping nilai dari a . b = … A. –10 3 B. –10 C. 10 D. 10 3 E. 20 12. Jika a = A. D. 21 30 29 dan a + b a – b = -1, maka panjang vektor b = … B. 2 6 E. 6 C. 2 7 13. Suatu persegi panjang OABC diketahui nilai OA = 12 cm dan AB = 5 cm. Jika OA = a dan OB = b maka nilai a . a + b = ….. A. 288 D. -36 B. 144 E. -72 C. 72 14. Jika vektor a + b + c = 0 dan a = 3, b = 5 dan c = 7, maka nilai a . b = …. A. 225 D. 75,5 Vektor B. 200 E. 7,5 C. 125 2 15. Jika a = 4 i + j + 5 k dan b = 2 i + j – 5 k maka hasil kali a . b = … A. -18 B. -16 C. 3 D. 12 E. 18 16. Jika A2, -3, 4, B6, -2, 2 dan C5, 4, 3 adalah titik-titik sudut dari segitiga ABC maka nilai AB . BC A. -8 B. 0 C. 6 D. 12 E. 15 17. Diketahui koordinat P-3, 2, 1 dan Q7, -3, 11 jika titik R membagi PQ dengan perbandingan PR RQ = 3 2, maka PR . RQ = …. A. 54 B. 36 C. 30 D. 24 E. 20 18. Diketahui A4, –3, 2 dan B–2, 5, 0. Jika titik P berada di tengah-tengah AB maka nilai dari PA . PB = …. A. 8 B. 3 C. -6 D. –20 E. –26 19. Diketahui segitiga ABC dimana A2x, 7, 3, Bx, 7, 7 dan C10, 16, 3x. Jika segitiga ABC siku-siku di A maka nilai x = …. A. -5 B. -4 C. 1 D. 2 E. 4 20. Diketahui vektor a = 3 i – 4 j + 2 k dan b = 2 i + 3 j serta c = 4 i + j – 6 k , maka hasil dari 2 a 3 b – 2 c = …. A. –24 D. 12 B. –20 E. 18 C. 8 21. Diketahui A1, 0, -1, B2, -5, 2 dan C-3, 1, 0 maka nilai dari BC . AC + 2 AB = …. A. 78 B. 64 C. 58 D. –58 E. –78 22. Diketahui a = 2 i – j + 2 k dan b = 3 i – j + k serta c = i + p j . Jika a . b + c = a . b maka nilai p = …. A. 1 B. 2 C. 3 D. 4 E. 5 23. Diketahu vektor a dan b dimana a  b = 11 dan a  b = 9, maka nilai a . b = …. A. 63 D. 15 B. 31,5 E. 10 C. 20 24. Diketahui dua vektor AB dan PQ , dimana AB = 6 cm dan PQ = 4 cm. Jika nilai AB . PQ = -12 maka besar sudut antara AB dan PQ adalah …. A. 300 D. 1200 Vektor B. 450 E. 1500 C. 600 3 25. Pada soal nomor 1 diatas, nilai sudut antara BA dan PQ adalah …. A. 300 B. 450 C. 600 0 0 D. 120 E. 150 26. Pada soal nomor 1 diatas, nilai sudut antara BA dan QP adalah …. A. 300 B. 450 C. 600 0 0 D. 120 E. 150 27. Jika  adalah sudut antara vektor a = 2 i + 4 j + 4 k dan b = i – 2 j +2 k , maka nilai cos  = …. A. 1/9 B. 1/6 C. 1/4 D. 1/2 E. 1/3 28. Besar sudut antara vektor p = –2 i + 2 k dan q = 2 j + 2 k adalah …. A. 300 B. 450 C. 600 D. 900 E. 1200 29. Diketahui P2, 4, –2 , Q4, 1, –1 , R7, 0, 2 dan S8, 2, –1. Besar sudut antara PQ dan RS adalah …. A. 300 D. 1200 B. 450 E. 1500 C. 600 30. Diketahui segitiga ABC dimana titik A4, 4, 1, B2, 5, 0 dan C0, 2, 1. Besar sudut B adalah A. 300 B. 450 0 0 D. 90 E. 150 31. Diketahui vektor a panjangnya 12 cm dan b panjangnya 8 cm. Jika sudut antara a dan b adalah 1200, maka nilai dari a + b a + b sama dengan …. A. 168 B. 112 C. 86 D. 68 E. 54 32. Diketahui u = 3 i + t j + 2 k . Jika u . u = 49 maka nilai t = ….. A. –4 B. –3 C. 2 D. 4 E. 6 33. Jika sudut yang dibentuk oleh dua vektor a = i – 2 j + k dan b = –4 i – 2 j +4 k adalah  maka nilai sin  = …. A. D. Vektor 1 9 5 9 6 3 B. E. 25 27 1 C. 5 9 3 9 4 34. Jika a = 3x i + x j – 4 k , b = –2 i + 4 j + 5 k dan c = -3 i + 2 j + k , serta a tegak lurus b , maka a – c = ….. A. 8 i + 9 j – 16 k B. 10 i + 15 j – 21 k D. –27 i – 12 j – 5 k E. –10 i + 15 j – 2 k C. –3 i + 12 j – k 35. Jika diketahui u = 4 cm dan v = 5 cm serta sudut antara u dan v adalah 600 maka panjang vektor 2 u + 3 v = ….. A. 23 D. 6 6 B. 28 E. 416 C. 409 36. Jika vektor a dan b membentuk sudut 300 serta berlaku a . a = 6 dan b . b = 4 maka nilai a  b = …. A. 2 7 D. B. 2 6 13 E. C. 3 2 5 37. Diketahui c = 2 a – 3 b . Jika a . c = 8 dan b . c = -3 serta a tegak lurus b , maka panjang vektor c adalah ….. A. 25 B. 20 C. 18 D. 12 E. 8 38. Diketahui dua vektor a = 2 i – j + 2 k dan b = 4 i + 10 j – 8 k . Jika x = a – n b tegak lurus dengan b maka nilai n = ….. A. 5 B. 4 D. 2/5 E. 1/10 C. -3 a  2  0 39. Vektor p =  a  dan q =  3  . Jika sudut antara p dan q adalah 600 maka nilai p . q   3  0      sama dengan ... A. -3 B. -2 C. 2 D. 3 E. 4 40. Diketahui 3 buah vektor a , b , dan c membentuk segitiga sama sisi yang masing-masing panjangnya 10. Jika a = b + c , maka nilai a . b + b . c + c . a = .... A. 300 B. 150 C. 100 D. 50 E. 50    41. Diketahui vektor a dan b dimana a = 6 cm dan b = 4 cm, serta a  b = 8 cm. Jika α  adalah sudut antara a dan b , maka cos α = … A. –1/3 B. –2/5 D. 1/3 E. 2/5 Vektor C. 1/4 5 42. Diketahui a = 2 dan b = 3 dan a  b = A. 450 D. 1350 5 . Besar sudut antara vektor a dan b adalah … B. 600 E. 1500 C. 1200   43. Jika diketahui vektor a dan b dimana a = 4 cm dan b = 5 cm serta

diketahui a 2 3 i